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Abstract Neo-Schumpeterian evolutionary economics has, since the early works of
Nelson and Winter, defined evolution as the change of the mean of a characteristic of
a population. This paper trancends the previous paradigm and explores novel aspects
of evolution in economics. Within the traditional paradigm change is provided by
directional selection (and directional innovation). However, the full definition of evo-
lutionary processes has to include two important types of selection that change the
variance without necessarily changing the mean. Stabilizing selection removes any
outlier and diversifying selection promotes the coexistence of behavioural variants.
This paper emphasizes the need for an integrated analysis of all three types of selec-
tion. It also demonstrates that the evolutionary algebra provided by Price’s equation
increases the intellectual coherence and power of thinking about selection and other
aspects of evolutionary processes. Directional, stabilizing and diversifying selection
are then related to fitness functions that can produce the different types of selection;
and the functions are used for simple simulations of the change of the population
distribution of a quantitative characteristic. Finally, the paper adds to evolutionary
economics a novel way of using Price’s equation to decompose the statistics of the
changes of the frequency distributions. The changes of mean, variance, skewness and
kurtosis are all decomposed as the sum of a selection effect and an intra-member
effect. It is especially the signs of these effects that serve to define and characterize
the different types of selection. Both this result and the general analysis of the types
of selection are of relevance for applied evolutionary economics.
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1 Introduction

The analysis of directional selection is well-developed in evolutionary economics
where it is often applied in empirical research and simulations in relation to produc-
tivity. This paper demonstrates that these analyses can be complemented by analyses
of stabilizing selection and diversifying selection. It also demonstrates that the evo-
lutionary algebra provided by Price’s equation increases the intellectual coherence
and power of thinking about selection and other aspects of evolutionary processes.
The paper combines these aims by analysing the types of selection by means of the
algebra of evolution provided by Price’s equation.

Neo-Schumpeterian evolutionary economics has largely been based on the
paradigm of directional evolution. From Nelson and Winter (1982) and onward,
economic evolution has implicitly been defined as the change of the mean of an
evolutionarily relevant characteristic of a population of firms. Evolution moves this
mean in a particular direction; and when the mean does not change any more, evo-
lution has come to a halt. This interpretation has been supported by the “Fisher
principle” (Metcalfe 1994) of the distance from mean dynamics (or replicator dynam-
ics) of a population of firms with different characteristics. Here positive directional
selection can in principle always proceed, but the emergence of positive outliers is
crucial. The movement of the mean characteristic is made by decreasing the vari-
ance. Thus evolution consumes variance as its fuel; and it comes to a halt unless
new variance is supplied by innovation or mutation. Evolution can also fade out
if the intensity of selection moves towards zero. Thus the paradigm of directional
evolution is supported by a clear principle. Furthermore, it has been formalized by
many well-developed models (Hanusch and Pyka 2007). Finally, the popularity of the
paradigm is related to the (over)emphasis on productivity change within evolution-
ary economics. It is normally recognized that what evolves in a population of firms
is ultimately a series of underlying characteristics rather than the firm-level produc-
tivities. But it is seldom recognized explicitly that these characteristics are not likely
to progress in the same trend-like manner as the aggregative phenomenon of pro-
ductivity. Even “evolutionary arms races” (Dawkins and Krebs 1979) cannot go on
forever.

Although some concrete characteristics, during limited periods, will display a pro-
gressive evolutionary trend as depicted by the paradigm of directional evolution,
we also observe two other types of evolution, as illustrated in Fig. 1. On the one
hand, there is stabilizing evolution that tends to remove any change away from the
favoured value of a characteristic. On the other hand, there are cases of diversify-
ing evolution that promotes the coexistence of different types of behaviour within
a population and may lead to the emergence of two separate populations. These
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Fig. 1 Three types of pure selection. The solid line represent the pre-selection distribution of the char-
acteristic and is identical across the three panels. The dashed lines represent the distribution of the
characteristic after pure direction, pure stabilizing and pure diversifying selection respectively

two possibilities are well-established within evolutionary biology (Futuyma 2005,
pp. 304–305, 345–350). Thus any biological analysis of natural selection would
not be complete without considering the possibilities of directional, stabilizing and
diversifying selection. Since the underlying genetics is normally unknown or com-
plex, such analyses generally play the “phenotypic gambit” (Grafen 1984), that is,
they study the change of directly observable characteristics. In the analysis of eco-
nomic evolution, it is easier to apply the methods of this phenotypic approach than
the methods of the traditional genotypic approach. But there are still difficult-to-
detect assumptions that are not useful in economic contexts – such as the normality
of population distributions and the randomness of mutations. Even the fact that firms
are diverse in a sustainable way is still not an established result within economics
(Syverson 2011).

2 Price’s equation and its usefulness

It is very helpful to analyze the different modes of selection within the totally gen-
eral framework of Price’s equation (Rice 2004, pp. 174–178). This seems the most
obvious way of overcoming the one-sided paradigm of directional evolution within
theoretical and applied evolutionary economics. However, Price’s equation emerged
from the statistical analysis of directional evolution. This analysis had already been
developed when Schumpeter (2000, p. 184) in the 1930s called for “a quantitative
theory of evolution”. But he seems to have been unaware that it had already been pro-
vided by the great statistician and evolutionary biologist Fisher (1930). One reason
for Schumpeter’s neglect is that he emphasized the innovative part of the evolutionary
process while Fisher emphasized directional selection. Another reason might have
been that many biologists were also unaware of the path-breaking approach.

Since Fisher was in many respects forty years ahead of his time, the biological
recognition and development of some of his major contributions took place in par-
allel with the emergence of modern evolutionary economics. Actually, Nelson and
Winter (1982, p. 243n) remarked that their formal statistical analysis of pure selec-
tion processes “reminded us of Fisher’s ‘fundamental theorem of natural selection’:
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‘The rate of increase in fitness of any organism at any time is equal to its genetic vari-
ance in fitness at that time’ ” (from Fisher 1930, p. 35). However, the result of Fisher
as well as that of Nelson and Winter are most obviously relevant for the special case
of pure selection processes. It was instead George Price who developed a general
decomposition of evolutionary change that includes not only the effect of selection
but also the effect of mutation or innovation (see Frank 1995, 1998). For the statistics
of any adequately defined population of members, Price proved that

Total evolutionary change = Selection effect + Intra-member effect (1)

This is the verbal version of Price’s equation for directional evolution. The selec-
tion effect can be interpreted as the intensity of selection times the variance of the
population. The intra-member effect is more difficult to interpret, but in economic
evolution it includes the consequences of learning and innovation within the mem-
bers of the population. Biological evolution is characterized by intra-member effects
that are many times smaller than the selection effects (Frank 2012a). In contrast,
applications of decomposition techniques that are mathematically identical to Price’s
equation on productivity data show selection effects that often amount to a rela-
tively small share of total evolution (Foster et al. 1998, 2008; Disney et al. 2003;
Bartelsman et al. 2004). This result is influenced by the problematic use of firms
rather than individual routine activities as the units of selection. However, it probably
also reflects that even the most narrowly defined intra-member effects in economic
evolution are important. These effects seem to some extent to be the consequence of
boundedly rational decisions that are influenced by higher-level selection pressures.
Thus there seems to be both a direct and an indirect influence of selection. This sug-
gests that the apparently discouraging result on the nature of economic evolution
does not warrant an abandonment of Fisher’s and Price’s focus on the selection effect
of Eq. 1.

The importance of Price’s decomposition of directional evolutionary change has
been difficult to understand, but during the last twenty years the situation has changed
radically both in evolutionary biology (Frank 1998; Rice 2004) and in evolutionary
economics. With respect to the latter, Metcalfe (2002, p. 90) pointed out that “[f]or
some years now evolutionary economists have been using the Price equation without
realising it.” It may be added to Metcalfe’s observation that formulations equivalent
to Price’s equation have also been used in productivity studies with few relations to
evolutionary economics (e.g., Foster et al. 1998, 2002, 2008; Disney et al. 2003). In
any case, we have arrived at a situation where the Fisher principle can be appreciated
(Metcalfe 1994; Frank 1997) and where we can extend the application of Price’s
equation in many directions.

It should be noted that important extensions (Metcalfe 1997; Rice 2004, pp.
194–203; Metcalfe and Ramlogan 2006; Okasha 2006; Bowles and Gintis 2011,
pp. 218–222) have emerged within the directional paradigm of economic evolution.
The present paper develops a very different type of extension. The background is
that Price’s equation can be used to decompose any evolutionarily relevant charac-
teristic. The relevant characteristic for stabilizing and diversifying evolution is the
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total change of the variance of the population distribution. For this case, we get the
following version of Price’s equation:

Total change of variance = Selection effect + Intra-member effect (2)

If the selection effect of Eq. 2 is negative, we observe stabilizing selection. If it is
positive, we have diversifying selection.

The paper has the aims of extending the concept of selection to include stabiliz-
ing and diversifying selection, and of demonstrating the power of Price’s equation
to this end. It starts by reviewing recent discussions in relation to Price’s equation
(Section 2). This review includes the presentation of a framework for analysing evo-
lution that then is used for the definition and analysis of directional, stabilizing and
diversifying selection (Section 3). These types of selection are then related to fitness
functions that can produce the different types of selection; and the functions are used
for simple simulations of the change of the population distribution of a quantitative
characteristic (Section 4). Finally, Price’s equation is used to decompose the statis-
tics of the changes of the frequency distributions (Section 5). Section 6 discusses the
implications of the results and venues for further research.

Although many presentations of Price’s Eq. 1 are available (including Andersen
2004; Knudsen 2004), this section of the paper presents the equation, discusses its
use and relates to recent discussions in the literature before we in the next section use
Price’s equation for the analysis of directional, stabilizing and diversifying evolution
and selection. One reason is that the increased general use of the Price equation has
led to misunderstandings and criticisms. Several criticisms have recently been sum-
marized by van Veelen et al. (2012) and countered by Frank (2012b). We integrate
a selective survey of this discussion in the following presentation of the equation.
More importantly, our account for the equation may serve as an introduction to direc-
tional selection. In addition, we introduce core concepts and mathematical notation
(see Table 1).

Two censuses Evolution is a population-level process in historical time. Price’s equa-
tion allows an arbitrary specification of the population. Thus we are not restricted to
analyse a population of firms. We can, for instance, analyse a population of regions,
but the interpretation of the results becomes difficult unless we have a theory of the
evolution of this type of population. Price’s equation analyses the evolution of the
population by means of data from two population censuses. We could have called
them the pre-evolution census and the post-evolution census. However, we will not
use these terms since Price’s equation normally focuses on selection. The first census
takes place at time t and can be called the pre-selection census of the pre-selection
population P. The second census at time t ′ can be called the post-selection census
of the post-selection population P′. There are no constraints on the choice of t and
t ′, but a relatively short time span seems preferable because the environment of the
population as well as the evolutionary mechanism are subject to change.

It was probably not least the assumption of having two censuses that led Price
(1972, p. 485) to emphasize that his equation is “intended mainly for use in deriving
general relations and constructing theories, and to clarify understanding of selection
phenomena, rather than for numerical calculation”. This is still true. Nevertheless, the
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Table 1 Core variables of Price’s analytical framework

Variable Definition Interpretation

xi Size of member i in pre-selection census

si xi/
∑

i xi Population share of i in pre-selection census

x′i Size of member i in post-selection census

s′i x′i /
∑

i x
′
i Population share of i in post-selection census

wi x′i /xi Absolute fitness of i

w
∑

i x
′
i /

∑
i xi Mean absolute fitness

ωi wi/w = s′i /si Relative fitness of i

zi Characteristic of member i in pre-selection census

z
∑

i si zi Weighted mean of z in pre-selection census

V ar(z)
∑

i si (zi − z)2 Weighted variance of z in pre-selection census

z′i Characteristic of member i in post-selection census

�zi z′i − zi Change in characteristic of i

z′
∑

i s
′
i z

′
i Weighted mean of z in post-selection census

�z z′ − z Change in z

Cov(w, z)
∑

i si (wi −w)(zi − z) Weighted covariance of wi and zi

βw,z Cov(w, z)/V ar(z) Slope of simple regression of wi on zi

βz′,z Cov(z′, z)/V ar(z) Slope of simple regression of z′ on zi

E(w�z)
∑

i siwi�zi Expectation of wi�zi

conditions for making numerical calculations have radically improved since Price’s
equation was formulated. We now have census data of several biological populations
and some economic systems.

Mapping between P and P′ Price (1995) emphasized the necessity and difficulty of
coupling the members of P and P′. If we consider a particular pre-selection popula-
tion member indexed i, then all related members of P′ should also be indexed by i.
In the case of firm i of P, the i-indexed representatives in P′ might be itself and its
spin-offs. And a merged firm can be split in proportion to the initial sizes of firm i

and firm j . Thus the evolutionary concept of a “member” of the post-selection pop-
ulation needed for the application of Price’s equation is not always that of the same
firm in the next period.

Firms that enter the population from the outside or are created from scratch cannot
be included in the described mapping procedure – and thus need separate treatment.
This treatment has been provided by Kerr and Godfrey-Smith (2009) for the case of
the biological species of an ecosystem. But the solution is really quite straightfor-
ward. We simply add an entry effect in Price’s Eq. 1. For reasons of symmetry we
may also add the exit effect:

Evolutionary change = Entry effect + Exit effect

+ Selection effect + Intra-member effect
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Data and calculations We now come to the data that need to be collected for the
pre-selection census at time t and the post-selection census at time t ′ – as well as
the statistical variables that we calculate from these data (see Table 1). Let us briefly
consider fitnesses and characteristics as well as the covariance between fitness and
characteristic.

The data of the first census includes the size of each pre-population member xi .
From the data of the second census we calculate the size of each member of the post-
population x ′i . Then we for all i-indexed members of the two populations calculate the
population shares si and s′i (in each population summing to unity). We also calculate
the members’ absolute fitness wi = x ′i/xi and the population’s mean fitness w =∑

siwi . The members’ relative fitness (often called fitness) is obtained by dividing
absolute fitness by the mean absolute fitness of the population: ωi = wi/w. Thus the
mean of relative fitness ω = 1.

For each member i, the census data provide us with information on the quantitative
characteristic whose evolution we want to analyse. We can study the evolution of
any quantitative characteristic, including mathematical transformations of the data of
the population. In any case, let these values of the characteristic be zi and z′i . The
fact that members of economically relevant populations are often of very different
sizes emphasizes the need of using the weighted mean characteristic z in the analysis.
Price’s equation decomposes the change of the weighted mean characteristic of the
population �z. This change can come from the aggregate effect of intra-member
change of characteristic �zi . But it can also be the result of the different fitnesses of
members with different characteristics. Crucial for the latter effect is the pre-selection
population variance of the characteristic V ar(z).

The core part of Price’s partitioning of �z is the statistical relationship between
member fitnesses and their characteristics. Let us assume that we operate in terms
of absolute fitnesses wi . The data of the two censuses can be used to calculate
Cov(w, z), that is, the weighted covariance of wi and zi . This covariance can
be interpreted as the part of evolutionary change that is caused by selection. The
interpretation can be helped by the rewrite Cov(w, z) = βw,zV ar(z). Here vari-
ance provides the fuel for selection while the regression coefficient is a measure
of the intensity with which selection exploits this fuel. It has been argued van
Veelen et al. (2012) that we are not facing a “real” covariance because of lack-
ing explicit foundations in statistics and probability theory. But as can be seen
from Table 1 the covariance element of Price’s equation is not the sample covari-
ance estimator of population covariance but rather the formula for population
covariance. Thus when Price’s equation is applied to population censuses rather
than a sample the selection effect is population covariance divided by population
fitness.

Price’s equation with relative fitness We are now ready to consider the formally
provable specification of Price’s equation that was informally presented in Eq. 1.
Since the proof of the equation is widely available (e.g., Frank 2012b), the prob-
lem is rather to identify the most useful version for evolutionary analysis. Price’s
equation in terms of relative fitness, ωi , focuses squarely on the core issue of the anal-
ysis of evolutionary processes. The primary issue of evolutionary analysis is not the
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aggregate growth of the population but its structural change due to the differential
growth of members with different values of the characteristic.

Total change
�z = Selection effect

Cov(ω, z) + Intra-member effect
E(ω�z) = βω,zV ar(z)+E(ω�z) (3)

There are evolutionary problems in which population-level does matter and where
it thus may be more instructive to use Price’s equation in terms of absolute fitness
rather than the elegant (3) but such problems are not considered in the current paper.

The left-hand side of Eq. 3 is the change of the mean characteristic of the popu-
lation. The selection effect is basically expressed as the covariance between relative
fitness and characteristic. This covariance can be rewritten as the product of the selec-
tion intensity βω,z and the variance V ar(z). There will be no selection effect if either
βω,z = 0 or V ar(z) = 0. For a given V ar(z) > 0, the size of the effect depends
on the slope of the linear regression line. The intra-member effect is more difficult
to interpret because the change of characteristic within each member is multiplied
by its relative fitness. In any case, it disappears if �zi = 0 for all members of the
population.

3 Three types of selection

When working with Price’s equation it is tempting to define evolution solely as the
change of the mean value of a directly observable characteristic of a population. This
gives no problems as long as we work within the directional paradigm of evolution-
ary economics. But the consequence of the definition is that we exclude the pure
forms of stabilizing and diversifying evolution that do not change the population
mean. It is not useful to apply a concept of evolution that excludes the processes that
keep a population near a local optimum or that bring forth the coexistence of popu-
lation members with very different behaviours and characteristic values. To include
these types of change we need to define evolution as any change of the frequency
distribution of a characteristic of a population.

Evolution and pure selection The change of the frequency distribution is the out-
come of the combined effects of selection and intra-member change. The primary
reason why this combination is so important in economic evolution is that the two
effects here often work in the same direction. The intra-member change is not the
outcome of random mutations, but of the efforts of boundedly rational firms and indi-
viduals. The recognition of this fact might give the analysis of economic evolution
a “Lamarckian” flavour (Nelson and Winter 1982, p. 11). In any case, the intra-
member change effect can often be interpreted as reflecting reactions to the selection
pressure. This is the reason why the two effects often work in the same direction.
In other words, selection produces not only the selection effect on the characteris-
tics of the initial population; it also produces parts of the reactions that lead to the
intra-member effect between the two censuses. This important problem, however, is
beyond the scope of the present paper. Here we will instead focus on the ordinary
selection effect.
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Directional selection The most obvious way of changing the frequency distribution
is through directional selection. Two ways of approaching directional selection are
illustrated by Fig. 2. In both panels, the pre-selection frequency distribution is to the
left and the post-selection distribution is to the right. The left panel moves the fre-
quency distribution such that the mean increases while the variance is left unchanged.
Thereby it in the simplest possible way illustrates the definition of directional selec-
tion as the change of the mean characteristic (here in the positive direction). It is
achieved through a combination of selection favouring higher values of the character-
istic and intra-member processes adding novel, higher values of the characteristic to
the population. In contrast, the right panel illustrates the effect of a directional fitness
function that influences both the mean and the variance of the distribution and where
no novel values of the characteristic are introduced. While the left panel illustrates
directional selection in its pure form, the right panel depicts the stabilizing effect of a
purely directional fitness function. The concept of directional selection represents an
aspect of the evolutionary process that can be combined with stabilizing selection or
other types of selection (Endler 1986; Rice 2004). This distance-from-mean dynam-
ics implies that members with higher than mean value of the characteristic will have
high relative fitness while those with low values will have lower fitness. The con-
sequence is that the mean of the distribution increases while its variance decreases.
(Endler 1986; Rice 2004). This possibility is left open if we define directional selec-
tion in terms of �z = z′ − z. If �z = 0, there cannot be directional selection. If
�z �= 0, we use the covariance term in Eq. 3 to determine whether this is due to
directional selection. If Cov(ω, z) > 0 we observe positive directional selection. If
Cov(ω, z) < 0, we have negative directional selection.

The Chicago approach Although we have used Price’s equation to define directional
selection, this idea can be traced back to the Chicago school approach to phenotypic
evolution (Lande and Arnold 1983; Conner and Hartl 2004, ch. 6). This approach
can be expressed in relation to Price’s equation (Rice 2004). Thus it emphasizes the
variance of the characteristics of the population, covariance between characteristics
and the reproduction of members, and the intertemporal inertia of the characteristics.
By focusing on these requirements for phenotypic evolution rather than on the direct
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Fig. 2 Pure directional selection and the effect of a directional fitness function. The left panel depicts the
concept of directional selection by leaving the variance unchanged. The right panel depicts the effect of a
directional fitness function such as that of replicator dynamics, where �zi = 0
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study of genetic evolution, this approach has been very successful for studying “nat-
ural selection in the wild” (Endler 1986; Brodie et al. 1995; Kingsolver et al. 2001;
Conner and Hartl 2004, ch. 6; Kingsolver and Pfennig 2007).

Estimating the types of selection The Chicago approach provides a simple way of
detecting the relative importance of directional selection and variance selection. This
importance is estimated by multiple regressions for a large number of populations.
The task is to estimate the relative fitness Yi = ωi = wi/w as the result of the
additive effects of a linear term and a nonlinear term. The linear term is X1 = zi and
the nonlinear term is X2 = (zi − z)2. Thus the multiple regression equation is

Y = a + b1X1 + b2X2 + error (4)

where b1 estimates the effect of directional selection and b2 estimates the effect of
variance selection. If b1 is different from zero, there is directional selection. If b2
is negative, we observe stabilizing selection. If b2 is positive, we have diversifying
selection. The two latter types of selection are often combined under the heading of
variance selection (Endler 1986). We often see that variance selection coexists with
directional selection. Although the formalism of Eq. 4 is simple, the production of
studies that applies it is by no means easy. Nevertheless, the development of evolu-
tionary economics would benefit significantly from a large number of such studies
and their use for the evaluation of the relative importance of directional selection,
stabilizing selection, and diversifying selection.

Defining the types of selection Although the Chicago approach is empirically ori-
ented, its definitions of the types of selection are what matters in the present context
(Rice 2004, p. 176). The definitions can be expressed on terms of covariances or of
the regression coefficients of Eq. 4

– Directional selection involves a change of the mean of the frequency distribution
that is explained by the covariance Cov(ω, z) = βω,zV ar(z). Directional selec-
tion is a nonzero linear regression of fitness on the characteristic. If βω,z > 0,
we have positive directional selection. If βω,z < 0, we have negative directional
selection.

– Stabilizing selection is a negative change of the variance of the frequency distri-
bution produced by a negative βω,(z−z)2 . This implies that Cov(ω, (z− z)2) < 0.

– Diversifying selection is a positive change of the variance of the frequency distri-
bution produced by a positive βω,(z−z)2 . This implies that Cov(ω, (z− z)2) > 0.

Directional selection is defined independently of the two other types of selec-
tion. This means that directional selection can coexist with stabilizing selection or
diversifying selection.

Stabilizing selection and directional selection Fisher (1930) started his famous book
by stating that “Natural Selection is not Evolution.” Here he referred to the pure
directional selection. His statement emphasized that biological selection can not only
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cause directional change but also bring this type of change to a halt at a fitness peak.
Here stabilizing selection serves to weed out mutants that do not have the locally opti-
mal value of the characteristic. If mutations tend to push the population in a particular
direction, then stabilizing selection has to be sufficiently strong to keep �z = 0. In
terms of Price’s Eq. 3, the balancing condition is that Cov(ω, z) = −E(ω�z). How-
ever, this is not the only way stabilizing selection can keep the population near the
characteristic with maximum fitness (Frank 2012a). Since biological mutations are
random, they normally increase the variance of the characteristic around the fitness
peak. To avoid evolutionary chaos, stabilizing selection has to be sufficiently strong
to counter this increase of variance.

Comparing types of selection We have now defined directional selection in terms of
the change of the mean of the frequency distribution. Similarly, we have defined sta-
bilizing selection as the process that decreases the variance of the distribution and
diversifying selection as the process that increases the variance. These definitions
mean that directional selection can work together with one of the two types of vari-
ance selection. But the definitions also allow comparison between the pure types of
selection. This comparison is provided by Figs. 2 and 3. The solid lines depict the
frequency distribution of the pre-selection population. The dashed lines depict the
post-selection distributions. As already mentioned, Fig. 2 depicts a selection process
in which only the mean characteristic is changing. The two panels of Fig. 3 keep the
mean unchanged while the variance changes. In the case of stabilizing selection the
variance decreases. The variance increases with a process of diversifying selection.

Combining the types of selection We have already noted that the directional fitness
function of replicator dynamics combines directional selection with stabilizing selec-
tion. More general issues of combination can be discussed concisely if we assume
the existence of a nonlinear fitness function for the population (Endler 1986). The
upward sloping part of the function of Fig. 4 represents predominantly positive direc-
tional selection. Furthermore, the part of the curve around the maximum represents
stabilizing selection and the downward sloping part represents negative directional
selection. The effect of this function depends on the composition of the pre-selection
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Fig. 3 The two pure types of variance selection. The solid curve depicts the initial frequency distribution
while the dashed curves depict the results of different types of variance selection by presenting the post-
selection distributions. Left panel pure stabilizing selection. Right panel pure diversifying selection
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Fig. 4 The population
composition and the type of
selection. The curve depicts a
non-linear fitness function. We
have directional selection if the
population is placed to the left
of the dashed line and
stabilizing selection to the right
of the dashed line. If the
population is distributed over
the entire horizontal axis we
have mixed selection pressures
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Value of characteristic

population. The population largely faces positive directional selection if the char-
acteristics of its members are distributed to the left of the dashed line. We have
stabilizing selection if the population is distributed to the right of the dashed line.
However, the population faces a mix of directional and stabilizing selection if it is
distributed over the entire range represented by the horizontal axis of the figure.

We encounter similar issues if the fitness function of Fig. 4 is changed to including
a U-shape. However, polarization cannot go on forever. Therefore, the assumed func-
tion would have to include downward bends at each of the extreme values. Assuming
that the fitness function is stable, the ultimate result of this diversifying selection will
be two separate subpopulations that are both facing stabilizing selection.

Two-dimensional fitness function Although this paper concentrates on the evolution
of a single characteristic, it is helpful to consider how we can represent a two-
dimensional fitness function graphically. The result is a graph that will look familiar
to students of microeconomics. We start by constructing a two-dimensional space
of characteristics. Each point in this space represents a potential location of a mem-
ber of the pre-selection population. This member has the value z1

i of characteristic 1
and z2

i of characteristic 2. Then we (perhaps based on estimates) assume the fitness
level that corresponds to each point in the two-dimensional space of characteristics.
The result is a fitness surface. Figure 5 depicts this surface as isofitness curves in
the space of characteristics. These curves represent selection as working on the com-
bined effect of the two characteristics; and the fitness maximum is marked by +.
Fitness increases when we move from the origin toward the fitness maximum; but it
decreases when we continue from the maximum towards the upper right corner.

Figure 5 allows us to understand some of the complexities of selection in a
two-dimensional space of characteristics. Let us assume that the fitness maximum
originally was placed in the middle of the gray area. Furthermore, we assume that
the population has moved to this area, where it has been subject to stabilizing selec-
tion with respect to both of its characteristics. However, fitness surfaces are generally
not stable, though they may appear to be so, as they potentially move back and
forth and from a longer-term perspective can appear to be fixed. Populations are
thus facing the Sisyphus work of performing lagged adaptations to ever-changing
selection pressures. The problem for the population in Fig. 5 is that the isofitness
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Fig. 5 Example of isofitness curves for two characteristics z1
i and z2

i . The fitness peak is marked by +.
At an earlier point of time, the isofitness curves had its peak in the middle of the gray area. This area
represents a population that was relatively well adapted to a previous situation, but which has become
maladapted because of the exogenous movement of the isofitness curves. With the depicted position of the
curves, the population faces stabilizing selection with respect to characteristic z2

i and a mix of directional
and stabilizing selection with respect to characteristic z1

i

curves have moved so that the new maximum is the peak marked by + while the
heterogeneous population is represented by the gray area. While this population was
relatively well adapted to a previous situation, it has become maladapted because the
isofitness curves have moved. The gray pre-selection population is still subject to
stabilizing selection with respect the second characteristic. But in the new situation
it confronts a combination of directional and stabilizing selection with respect to the
first characteristic.

Further discussion of the topic of two-dimensional fitness surfaces is beyond the
limits of this paper. But it should be noted that although we to some extent relate to
Wright’s (1932) famous formalization of selection in terms of “fitness landscapes”,
the two concepts are not exactly the same. While each point in Wright’s landscapes
in principle represents the analysed mean of a small and localized population, the fit-
ness function surfaces of the Chicago school are based on data for a single population
(Conner and Hartl 2004, pp. 210–211). However, both approaches serve to emphasize
that we have to complement the well-known process of directional selection with an
analysis of the processes of stabilizing selection and diversifying selection. Further-
more, we have to be very cautious when we are analyzing the evolution of a single
characteristic of a population.

4 Three types of fitness functions

The understanding of the problems and methods related to the analysis of selection
can be enhanced through examples of selection processes that have known proper-
ties because they are produced by explicit fitness functions. This approach has for
evolutionary biology been emphasized by Endler (1986, pp. 260–271), and there is
much need of producing simulated examples of selection processes in evolutionary
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economics. To be helpful, these examples have to be produced by simple fitness
functions. In this section we define and simulate a directional fitness function, a
stabilizing fitness function, and a diversifying fitness function.

Our fitness functions are all constructed so that they can produce such discrete-
time simulations. To run these simulations we normally – apart from the initial
population P – need the values of a couple of parameters. But the simulations are sim-
plified by the fact that we do not provide any mechanism of intra-member change.
Instead we assume �zi = 0. The consequence is that only the selection term of
Price’s Eq. 3 needs to be examined when we, in Section 5, turn to the analysis of
the change of mean characteristic. However, both terms of the equation are needed
for the analysis of the change of variance, skewness and kurtosis of the frequency
distributions.

The initial population For the present purposes, we do not need to be realistic when
defining the initial population P. On the contrary, what are needed are the simplest
data data that provide the different types of fitness functions with lots of variance.
We obtain such data by assuming a large population in which all values of the char-
acteristic within a specified range are represented equally. Population P consists of
1000 members, and this number does not change during the simulations. Each mem-
ber has a fixed value of its characteristic zi . As the total size of the population is
inconsequential to the simulations we specify each member to have an equal initial
population share of si = 1/1000, and we can then refrain from considering member
size, xi , at all. The values of the characteristic are uniformly distributed over the inter-
val [min(z),max(z)]. Thus the distance between members is d = (max−min)/999,
and z1 = min(z), z2 = min+d, z3 = min+2d, . . . , z1000 = max(z). For the follow-
ing simulations we specify the fitness function for absolute fitness, wi = w(zi), and
the population then evolves according to:

s′i = si
wi

w
= siωi (5)

By using Eq. 5 we are assuming that the change in population share of member i is
entirely determined by relative fitness but in empirical applications it is likely that
population shares exhibit persistence. This could be explicitly modelled by allowing
s′i to be the weighted average of si and siωi . However, as our simulations are meant
to provide simple illustrations of the evolutionary processes the only consequence
would be that we would have to run the simulations for additional rounds for the
results to stand out clearly. Results can be seen after just 1 round of simulation with
Eq. 5 and after 4 rounds they stand out very clearly.

Standardized presentation of results The simulation results can best be visualized as
changes in the frequency distribution of the values of the characteristic. We employ
a standardization of the range for zi that has become widespread in the parts of
evolutionary biology which are influenced by the above mentioned Chicago school
approach to phenotypic evolution. This method has several advantages, including the
increased ease of comparing different types of selection. Therefore, the initial uni-
form distribution of the characteristic has in our simulations been defined to have
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mean zero and standard deviation one. Since the variance of a uniform distribution is
1

12 (max−min)2, zi in our initial population P has a continuous uniform distribution
U(min = −√

3,max = √
3). In terms of standard deviations this implies that our

population covers about 1.7 standard deviations on each side of the mean of zero.

Directional fitness function It is possible to define an unrealistic directional fitness
function in which a particular value of the characteristic zi under all circumstances
gives the same absolute fitness wi . However, we normally think of a process of
positive directional selection in which the relative fitness ωi of a member with char-
acteristic zi depends on its distance from a changing population mean z. The logic of
this fitness function is that ωi = 1 if zi − z = 0; but if zi − z > 0, then ωi > 1; and
if zi − z < 0, then ωi < 1. Furthermore, ωi should be proportional to the distance
from the mean. What is called replicator dynamics or distance-from-mean dynamics
has these properties. Thus we can use the following directional fitness function:

ωi = zi + k

E(zi + k)
= zi + k

zi + k
= wi

w
(6)

The constant k is added to avoid negative fitness values and to avoid dividing by zero.
The results of simulating the directional fitness function of Eq. 6 are depicted in the
upper panel of Fig. 6, page 14. The dotted line represents the frequency distribution
of the initial population (that was described above). The standardized mean is zero.
This implies that the right half of the population has above mean fitness and the left
half has below mean fitness. The result of the first round of selection is indicated by
the dashed line. This round increases or shrinks the member shares in proportion to
the distance from the mean of zero. The second round of selection is not depicted
but it is based on z > 0. The fourth round is based on an even higher z. Its result
is shown by the full line of the panel. However, it should be noted that a directional
fitness function cannot on its own produce pure directional selection as selection nec-
essarily consumes variance. Compared with the initial uniform distribution, the four
rounds of applying the directional function have moved the mass of the distribution
so that increasing mean and kurtosis is one consequence and decreasing variance and
skewness is another consequence. As an example, assume that we are studying work
organisation in a large factory paying a piece rate. Workers have complete discretion
in organising their work so whatever practices result in a higher physical efficiency
will spread to other workers (assuming that there is no collusion among workers). If
workers can be more productive by stacking their goods higher then the average hight
of the stack of goods next to each worker’s station will evolve according to a direc-
tional fitness function. This process obviously cannot go on for ever but, as already
mentioned, this is a typical element of directional selection.

Stabilizing fitness function Let us consider the properties of simple fitness functions
that are able to produce stabilizing selection. The basic requirement is that there is
maximum fitness related to a particular value of the characteristic, z∗. The logic of
stabilizing fitness functions is that ωi has its maximum if zi = z∗. Furthermore,
if zi < z∗ or if zi > z∗, then ωi is smaller than its maximum. Finally, ωi should
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Fig. 6 Effects of one and four
rounds of selection by different
fitness functions. The upper
panel is produced by the
directional fitness function (6),
the middle panel by the
stabilizing function (7) with
z∗ = 0, and the lower panel by
the diversifying function (8)
with z̃ = 0. Characteristics data
are standardized to have a mean
of zero and a standard deviation
of unity initially. The curves are
constructed as kernel density
estimates over zi in the
simulated data and thus the
distributions appear rounded
near the minimum and
maximum. From the viewpoint
of evolutionary modelling this
behaviour can be considered an
artefact that should be ignored
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be decreasing in some relation to the numerical distance |zi − z∗|. These require-
ments for a stabilizing fitness function is fulfilled by a second degree polynomial
with maximum at z∗; that is wi = −z2

i + 2z∗zi + k.

ωi = −z2
i + 2z∗zi + k

E(−z2
i + 2z∗zi + k)

= wi

w
(7)

Again it is necessary to add k for computational reasons. This stabilizing fitness
function resembles the directional fitness function of Eq. 6. But whereas (6) is linear,
Eq. 7 has a maximum at zi = z∗ and decreases symmetrically for higher and lower
values of zi .

The discussion in relation to Fig. 4 suggested that the outcome of applying a
stabilizing fitness function depends on the localization of the characteristics of the
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population relative to the fitness maximum, z∗. We get pure stabilizing selection if
the population is located symmetrically around the mean z. The other possibility is
that z∗ �= z, and this possibility will be discussed below. Presently we consider the
case in which z∗ = z. Given that �zi = 0 for all members, this implies that (7) does
not change the mean of the frequency distribution.

The middle panel of Fig. 6 depicts the result of using Eq. 7 with z∗ = z on
the uniformly distributed pre-selection population specified above. This fitness func-
tion gradually brings the population closer to its fitness maximum by decreasing the
variance and increasing the kurtosis of the frequency distribution. After many more
rounds of simulation, the distribution will end up as being concentrated on the char-
acteristic with maximum fitness, z∗. As an example consider again the large factory
paying a piece rate and assume that a 5 minute break after an hour’s work results in
the highest physical efficiency. A shorter break means that the worker becomes tired
and works slower towards the end of the day while a longer break entails squandering
working time. So the mean break length per hour of work will converge on 5 minutes
throughout the factory in a process of stabilizing selection.

Diversifying fitness function In principle, the specification of a diversifying fitness
function assumes that there are two values of the characteristic that have maximum
fitness, a lower value and a higher value. However, if these maxima are located out-
side the range of characteristic values that are represented in the population, then it
is sufficient to know the location of the fitness minimum at z̃. We specify our diver-
sifying fitness function in a way that is closely related to the specification of Eq. 7.
This diversifying function is

ωi = z2
i − 2z̃zi + k

E(z2
i − 2z̃zi + k)

= w′
i

w
(8)

Equation 8 produces a U-shaped parabola with minimum when zi = z̃. Thus fit-
ness increases on both sides of this fixed location of minimal fitness. To ensure
comparability, we apply the positive constant k that was used in Eqs. 6 and 7.

The diversifying fitness function produces pure diversifying selection if the pop-
ulation is located symmetrically around the mean and this mean is equal to the
minimum fitness z̃. This is the case for the above specified initial population. The
results of one and four rounds of using Eq. 8 are shown in the lower panel of Fig. 6.
In our standardized presentation of the data z̃ = z = 0. The shares of members
near the mean steadily decrease while the fitness of those with extreme character-
istics increase. Compared with the initial one, the distribution after four rounds is
characterized by an increase of variance and a decrease of kurtosis. For an example
of diversifying selection return once again to our factory. Workers have a choice of
two different methods for fitting together two components. Some workers will ini-
tially be switching back and forth for a bit of variation but unless a worker uses the
same method each time she misses out on the opportunity of specialisation. So over
time the probability that any one methods is used across the factory will evolve in
accordance with a diversifying fitness function.
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Mixed selection The simulations of the quadratic fitness functions have served to
illustrate pure forms of stabilizing selection and diversifying selection. A quick
glance on these illustrations might give the impression that Eqs. 8 and 7 will always
produce pure forms of selection. This impression is false for both equations, but we
will emphasize the stabilizing fitness function. Figure 4 demonstrated that such a
function can produce stabilizing selection, directional selection, and a mix between
the two. In this figure the varying results depend on the composition of the popu-
lation. But we can also (as in Fig. 5) move the fitness function. In the univariate
case of Eq. 7, we obtain a similar result by changing from z∗ = 0 to z∗ = 0.7
(so that z < z∗). The consequences are shown in Fig. 7 on page 16. Here the sta-
bilizing fitness function has produced a mix of stabilizing selection and directional
selection. More specifically, the function moves the frequency distribution closer to
the maximum of 0.7 by increasing the mean, decreasing the variance, decreasing the
skewness, and increasing the kurtosis.

5 Analyzing the fitness functions through Price’s equation

After having discussed Price’s equation and types of selection, the remaining task is
to demonstrate and analyse the relationship between the types of selection and the
fitness functions defined above by application of Price’s equation. It is demonstrated
in this section how Price’s equation provides an exact and fruitful way of analysing
the dynamics created by the fitness functions. We have in Section 2 seen how Price’s
Eq. 3 can be used to decompose the total change of the mean characteristic of the
population. However, Price (1995, p. 391) pointed out that his equation can be used
for the analysis of any “change produced by the selection process in a population
property X related to property x of individual set members. (For example: X might
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Fig. 7 Effects of one and four rounds of selection by the stabilizing fitness function with changed fitness
maximum. The results are produced by Eq. 7 with z∗ = 0.7. Characteristics data are standardized to have
a mean of zero and a standard deviation of unity initially. The curve is constructed as a kernel density
estimate over zi in the simulated data and thus the distribution appears rounded near the minimum and
maximum. From the viewpoint of evolutionary modelling this behaviour can be considered an artefact that
should be ignored
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be the arithmetic mean of the xi or their variance, and correspondingly for X′ and
the x ′i values.)” This comprehensiveness of Price’s equation is crucial for the analysis
of the dynamics of the different fitness functions. This analysis is supported by the
additional use of the equation to decompose the frequency distributions’ change of
variance, change of skewness, and change of kurtosis. As an introduction it is helpful
to consider the descriptive statistics of the frequency distributions presented in Figs. 6
and 7.

Statistics of the distributions The figures of Section 4 visualize how the different
types of selection can be represented by different changes in the initial population’s
frequency distribution of the characteristic z. Table 2 presents the statistics needed for
comparing the distribution in P with the different distributions in P′′′′. The statistical
characteristics of the initial distribution are given in the first data column of Table 2.
The following columns present the statistics of the new distributions after four rounds
of using the fitness functions.

By subtracting the first from the second data column of Table 2, we see that the
directional fitness function has complex effects. In four rounds it has moved the mean
in the positive direction by 0.69 standard deviations. At the same time it has decreased
the variance of the frequency distribution by nearly a third, provided a strong negative
skewness, and increased the kurtosis of the distribution.

The third and fourth data column show the results of using the stabilizing fitness
function (7) with z∗ = 0 and the diversifying fitness function (8) with z̃ = 0. By
subtracting the first column from each of them we see that these fitness functions
work only through the change of variance and kurtosis. The difference is that while
stabilizing selection decreases variance and increases kurtosis, diversifying selection
increases variance and decreases kurtosis. These results are based on the locations of
the maximum fitness of the stabilizing function z∗ and the minimum fitness of the
diversifying function z̃. Both were placed at the mean of the distribution z.

The last column of Table 2 shows the result of the stabilizing fitness function
when the maximum fitness z∗ is moved 0.7 standard deviations in the positive

Table 2 Statistics of the standardized distributions of Figs. 6 and 7

Initial After four rounds of

distribution Directional Stabilizing Diversifying Mixed

Mean of z 0.00 0.69 0.00 0.00 0.59

Variance of z 1.00 0.68 0.45 1.56 0.39

Skewness of z 0.00 −0.85 0.00 0.00 −0.27

Kurtosis of z 1.80 2.93 2.48 1.37 2.40

The table presents statistics of the initial distribution and of the distributions produced by four rounds of
the different types of fitness functions. Directional is the distribution produced by the directional fitness
function (6). Diversifying is produced by the diversifying fitness function (8). Stabilizing and Mixed are
produced by stabilizing fitness function (7) with two locations of maximum fitness, z∗ = 0 and z∗ = 0.7.
It should be noted that the paper analyses the changes of these statistics. For instance, in the mixed case
�z = 0.59 − 0.00 = 0.59 and �V ar(z) = 0.39 − 1.00 = −0.61
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direction. Then four rounds of using Eq. 7 produce results that are rather similar to
those produced by the directional function (6). The mean is moved by 0.59 standard
deviations, variance is decreased, we see negative skewness, and kurtosis is increased.
This similarity emphasizes that caution is needed when we try to characterize overall
fitness functions as representing different types of selection.

Moments of the distributions The method of moments was introduced by the statisti-
cian and evolutionary biologist Karl Pearson (by a concept borrowed from physics).
We consider the central moments of frequency distributions with characteristic z at
the random variable. Then the mth central moment of the distribution is defined as

E
[
(zi − z)m

] =
∑

i

si (zi − z)m

The second central moment (m = 2) is the variance of the distribution. When the third
central moment is divided by σ 3

z , we get the statistical concept of the skewness of
the distribution. When the fourth central moment is divided by σ 4

z , we get one of the
statistical concepts of kurtosis. The central moments characterize different aspects
of the shape of the distribution. Odd moments (m = 3, 5, . . .) measure the asymme-
try of the distribution while even moments (m = 2, 4, . . .) measure the symmetric
spread around the mean. With increasing m the importance of outliers increases.
Since outliers are crucial for evolutionary processes, the higher moments here have
an importance that is not found in non-evolutionary uses of statistics (emphasized by
Metcalfe 1994; and Rice 2004, p. 227).

Change of moments and Price’s equation As already mentioned, Price’s equation
can be used for the partitioning of the change of the mean of any quantitative
characteristic C. The only requirement is that we define the member values of the
characteristic Ci such that C is the mean and �C is the change we want to decom-
pose. In the case of variance, the characteristic (zi − z)2 gives the expectation∑

(zi − z)2 = V ar(z). In the case of skewness, the characteristic is (zi − z)3/σ 3
z

since the expectation is the skewness of the distribution. In the case of kurtosis, the
characteristic is (zi − z)4/σ 4

z since the expectation is the kurtosis of the distribution.
Thus we can use Price’s Eq. 3 to decompose the change of the variance, skewness
and kurtosis of the frequency distribution. The decompositions of the change in the
distribution’s variance, skewness and kurtosis are thus provided by

�Var(z) = Cov
[
ω, (z− z)2

]
+ E

[
ω�(z− z)2

]

= Cov(ω, υ)+ E(ω�υ) (9)

�Skew(z) = Cov
[
ω, (z− z)3/σ 3

z

]
+ E

[
ω�((z− z)3/σ 3

z )
]

= Cov(ω, γ )+ E(ω�γ ) (10)

�Kurt (z) = Cov
[
ω, (z− z)4/σ 4

z

]
+ E

[
ω�((z− z)4/σ 4

z )
]

= Cov(ω, κ)+E(ω�κ) (11)
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By moving from decomposing the change of the mean in Price’s Eq. 3 to decom-
posing the change of the variance in Eq. 9, we have started the analysis of the
recursive process of selection. The original Price’s equation deals only with the
change from the pre-selection population to the post-selection population, but Eq. 9
provides us with a measure of the fuel that this change leaves for the movement of the
mean between the post-selection population and the post-post-selection environment.
If the amount of fuel is being gradually reduced the selection process will after many
rounds of selection come to a halt – unless a change of the environment changes the
fitness function or new fuel is provided by mutation or innovation.

There are three aspects of the selection process that are not adequately covered
by the analysis of the change of the variance of the distribution. First, the outliers of
the distribution of characteristics are crucial and they can be emphasized more than
in the measure provided by the squared distances from the mean. We can also study
higher central moments such as those dependent on (zi − z)3 and (zi − z)4. Second,
the asymmetry of the distribution, as reflected by moments with odd powers, is also
of importance for the selection process. Third, some types of selection can only be
defined by reference to changes in the higher moments of the distribution. In general,
we have to recognize that the statistics of the higher moments play a much larger role
in evolution than in most other subjects. Therefore, it is important that we can use
Price’s equation to decompose the change of all these moments as demonstrated by
Eq. 10 for skewness and Eq. 11 for kurtosis.

Analysing the change of the distributions The mean, variance, skewness and kurtosis
of the initial distribution and the distributions produced by four rounds of applying
the different fitness functions were shown in Table 2. The overall changes of these
statistics have already been discussed. Now we turn to analysis of these changes by
means of Price’s equation: as the sums of covariance terms and expectation terms.
The results are shown in Table 3. Let us start by the decomposition of the change of
the mean. Since �zi = 0, the expectation term is zero and the whole change of 0.69
standard deviations produced by the directional fitness function is accounted for by
the covariance term. The same is the case for the mixed type of selection produced
by the stabilizing fitness function with maximum fitness different from the mean. In
contrast, the pure types of stabilizing and diversifying selection do not change the
mean.

The decompositions of the changes of variance are more interesting. From Table 2
we know that the directional fitness function produces an overall change of the
variance of −0.32. However, the covariance term of Table 3 shows a positive selec-
tion effect of 0.16 while the expectation term shows a negative intra-member effect
of −0.48. We have accounted for the overall change of variance since −0.32 =
0.16 − 0.48, but we now recognize the complexities of the process produced by the
directional fitness function. We also recognize the difference between the directional
function and the stabilizing function that has a maximum different from the mean.
The latter also has an overall negative change of variance, but this change is pro-
duced by two negative terms (−0.61 = −0.26 − 0.35). In contrast, the changes of
variance by pure stabilizing and diversifying selection are solely produced by the
covariance term.
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Table 3 Statistical components of the selection dynamics in Figs. 6 and 7

Statistical change Term in After four rounds of

that is decomposed Price’s equation Directional Stabilizing Diversifying Mixed

� Mean Cov(ω, z) 0.69 0.00 0.00 0.59

E(ω�z) 0.00 0.00 0.00 0.00

� Variance Cov(ω, υ) 0.16 −0.55 0.56 −0.26

E(ω�υ) −0.48 0.00 0.00 −0.35

� Skewness Cov(ω, γ ) 1.26 0.00 0.00 0.83

E(ω�γ ) −2.11 0.00 0.00 −1.11

� Kurtosis Cov(ω, κ) 0.40 −1.31 1.51 −0.65

E(ω�κ) 0.72 1.98 −1.94 1.25

The total change of the different statistics can be found in Table 2. For instance, in the mixed case
�V ar(z) = −0.61. This change is the sum of the covariance term and the expectation term: −0.61 =
−0.26 + (−0.35)

The concepts of pure directional and pure stabilizing selection do not include the
skewness of the frequency distribution. However, a change of skewness is found in
the distributions produced by the directional fitness function (6) and the stabilizing
fitness function (7) with maximum different from the mean. They both produces
a negative change of skewness that is caused by a positive covariance term that is
smaller than the negative expectation term.

The signs of change Although the details of the statistics of the decomposed overall
changes of mean, variance, skewness and kurtosis are important, the different fitness
functions can to a large extent be characterized by the signs of the covariance terms
and the expectation terms. These signs are presented in Table 4. Let us start by com-
paring the results of applying the stabilizing function and the diversifying function
with optima at z. The pattern of signs is opposite. With respect to change of vari-
ance, the results of the stabilizing function have a negative covariance term while the
diversifying function produces a positive covariance term. The same is the case for
the covariance terms of the change of kurtosis. However, the change of overall kurto-
sis is also influenced by the positive expectation term of the stabilizing function and
the negative expectation term of the diversifying function.

The comparison of the changes in the distribution produced by the directional
function and the stabilizing function with a displaced maximum contains more ele-
ments. However, they have the same signs except in the case of the decomposition of
the overall change of kurtosis. For the directional function the covariance term and
the expectation term are both positive. However, for the mixed function of stabiliza-
tion only the covariance term is positive while the expectation term is negative. We
have not reported results for simulating negative directional selection but changes in
the distribution of the characteristic induced by negative directional selection would
not be identical to those induced by positive directional selection. In the case of
negative rather than positive directional selection the mass of the distribution would
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Table 4 Signs of the components of the analysed examples of selection dynamics

Statistical change Term in Type of fitness function

that is decomposed Price’s equation Directional Stabilizing Diversifying Mixed

� Mean Cov(ω, z) POS 0 0 POS

E(ω�z) 0 0 0 0

� Variance Cov(ω, υ) POS NEG POS NEG

E(ω�υ) NEG 0 0 NEG

� Skewness Cov(ω, γ ) POS 0 0 POS

E(ω�γ ) NEG 0 0 NEG

� Kurtosis Cov(ω, κ) POS NEG POS NEG

E(ω�κ) POS POS NEG POS

The signs are from Table 3

shift towards the left tale rather than the right. The decompositions of the changes
in mean and skewness would show the opposite signs when compared to positive
directional selection. The decompositions of the changes in variance and kurtosis,
however, would show the same signs.

The discussion of the current section highlights how quick recognition of the
traces of the different fitness functions is facilitated by focusing on the pattern of
signs of the two terms of Price’s equation. However, further simulations are much
needed for producing closer approximations to real evolutionary processes. First,
different fitness functions might concurrently contribute to more realistic cases of
selection. Second, real selection normally works concurrently on several characteris-
tics of the members of the population. Third, we have to analyse the consequences of
abandoning the assumption that �zi = 0.

6 Conclusion

The research underlying this paper had two closely connected aims. The first aim
was to demonstrate how the well developed analysis of directional selection within
evolutionary economics can be complemented by analyses of stabilizing selection
and diversifying selection. The second aim was to demonstrate that the evolutionary
algebra provided by Price’s equation increases the intellectual coherence and power
of thinking about selection and other aspects of evolutionary processes.

The first aim of the paper serves to counter the predominant directional paradigm
within evolutionary economics that has led to a neglect of processes of evolution
that are influenced by stabilizing selection and diversifying selection. Actually, these
types of selection still lack generally acknowledged definitions. We suggested that –
like in evolutionary biology–they should be defined by their influence on the variance
of the population distribution of the values of a characteristic. Stabilizing selection is
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the negative change of this variance and diversifying selection is the positive change
of variance. In contrast, directional selection is defined as the positive or negative
change of the mean.

These definitions do not necessarily represent what is normally thought of as the
different types of selection. This is one of the reasons why we complemented the
basic concepts with the definitions of fitness functions that can produce the different
types of selection. For instance, replicator dynamics provides a fitness function that is
normally considered a core example of directional selection. It nevertheless not only
influences the mean but also the variance. Similarly, the fitness functions that best
represent stabilizing selection and diversifying selection only produces a change in
variance without influencing the mean when we assume that it is very special charac-
teristic values that produce maximum fitness and minimum fitness in these functions.
Actually, the three fitness functions can produce so many patterns of change that there
is a strong need of finding methods for detecting which processes have produced
a particular pattern of change. We produced detectable patterns by using Price’s
equation to decompose the change produced by the different types of fitness func-
tions with different parameters. Then the possible fingerprint is the set of eight signs
of the two Price equation effects for the change of the mean, variance, skewness
and kurtosis produced under different conditions by the different types of fitness
functions.

The paper could not confront the more important issue of using the basic def-
initions of the types of selection to estimate the relative importance of directional
selection, stabilizing selection and diversifying selection in economic evolution. The
reason is that this estimation is an empirical problem beyond the scope of the current
paper.

The second aim of this paper was to demonstrate the surprising analytical power
of Price’s equation, and a main contribution thus is the combination of discipline and
flexibility that we got from thinking in terms of this equation. However, our review of
recent controversies on Price’s equation serves to emphasize the difficulties involved
in its comprehension and application. We contributed to surmounting some of these
by reviewing the different versions of Price’s equation as well as specifying the ana-
lytical framework in which it can be used. This framework includes two censuses of a
population, a mapping between the members of the pre-selection population and the
post-selection population, the analysis of changes in the frequency distribution of a
selected characteristic, the calculation of fitnesses, the decomposition of the changes
of the distribution into the sum of selection effects and intra-member effects, and the
analysis of these effects. The handling of these and other issues require the use of
mathematical notation, and we largely used the standard notation that has developed
in relation to Price’s equation.

Although our exposition includes a number of novelties, we have basically been
presenting the state of the art. The most concrete contribution to the literature is the
analysis of the signs of the Price equation decomposition of the change of skewness
and kurtosis. In any case, a main conclusion of this paper is that Price’s algebra
of evolution helps in improving the intellectual coherence and power of thinking
about selection processes in economic life. Through multi-level analysis it can also
help to disentangle parts of evolution that are not immediately revealed as being
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based on selection. The third condition for a long-term evolutionary process, besides
from variance and replication, is novelty. In economics this generally means learning
and innovation and it has here been confined to the intra-member effect but such
processes also contain an element of selection among alternatives.

It remains to be seen whether the concepts of directional, stabilizing and diversi-
fying evolution can also help the analysis of learning and innovation. If this is the
case, there might be a chance of analyzing systematically broad ideas such as techno-
economic paradigms, regimes and trajectories of evolution, and the distinction
between radical and incremental innovation.
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